ReentrantLock 实现原理
ReentrantLock 实现原理
使用synchronized关键字来做同步处理
基于AQS(AbstractQueuedSynchronized)实现的。
是一个重入锁:一个线程获得了锁之后仍然可以反复的加锁,不会出现自己阻塞自己的情况。
锁类型
默认是非公平锁,在创建时可以指定锁的类型
public ReentrantLock() {
sync = new NonfairSync();
}
/**
* Creates an instance of {@code ReentrantLock} with the
* given fairness policy.
*
* @param fair {@code true} if this lock should use a fair ordering policy
*/
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
公平锁
/**
* Sync object for fair locks
*/
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock() {
acquire(1);
}
/**
* Fair version of tryAcquire. Don't grant access unless
* recursive call or no waiters or is first.
*/
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
首先会判断
AQS
中的state是否等于0,0表示当前线程没有获取锁。会在 hasQueuedPredecessors()判断当前AQS的队列中是否有其他线程, 如果存在,则不会去尝试获取锁,
如果队列中没有线程就利用 CAS 来将 AQS 中的 state 修改为1,也就是获取锁, 获取成功则将当前线程置为获得锁的独占线程(setExclusiveOwnerThread(current))
非公平锁
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
/**
* Performs lock. Try immediate barge, backing up to normal
* acquire on failure.
*/
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
//
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
非公平锁在lock时平不会去试图去判断AQS队列中是否存在线程,而是直接去获取锁, 而且在tryAcquire()时也是直接去获取锁,
写入队列
如果 tryAcquire(arg) 获取锁失败,则需要用 addWaiter(Node.EXCLUSIVE) 将当前线程写入队列中。
写入之前需要将当前线程包装为一个 Node 对象(addWaiter(Node.EXCLUSIVE))。
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
首先判断队列是否为空,不为空时则将封装好的 Node 利用 CAS 写入队尾, 如果出现并发写入失败就需要调用 enq(node); 来写入了。
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
挂起线程
写入队列之后需要将当前线程挂起(利用acquireQueued(addWaiter(Node.EXCLUSIVE), arg)):
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
释放锁
public void unlock() {
sync.release(1);
}
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
非公平锁和公平锁释放的过程是一样的,都会掉用Sync的tryRelease方法, 如果当前重入锁的数量为0,则就调用unparkSuccessor(h)方法释放锁,
总结
java.util.concurrent.locks.ReentrantLock.FairSync.lock
->java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire
| ->java.util.concurrent.locks.ReentrantLock.FairSync.tryAcquire
| ->java.util.concurrent.locks.AbstractQueuedSynchronizer.hasQueuedPredecessors
| ->java.util.concurrent.locks.AbstractQueuedSynchronizer.compareAndSetState
| ->java.util.concurrent.locks.AbstractOwnableSynchronizer.setExclusiveOwnerThread
->java.util.concurrent.locks.AbstractQueuedSynchronizer.addWaiter
->java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireQueued
锁的过程中
参考:https://blog.csdn.net/java_lyvee/article/details/98966684
Last updated
Was this helpful?